Zerlegung von Zahlen – Hunderter, Zehner und Einer verstehen
Das Verständnis für den Aufbau von Zahlen ist eine der wichtigsten Grundlagen der Mathematik. Mit der Übung „Zahl zerlegen und zusammensetzen“ lernen Kinder der 2. Klasse, wie sich eine Zahl aus ihren Stellenwerten zusammensetzt: den Hundertern, Zehnern und Einern.
Auf dem Bildschirm erscheint ein Ausdruck wie zum Beispiel 600 + 70 + 3. Dabei handelt es sich nicht um eine Rechenaufgabe im klassischen Sinn, sondern um eine Zerlegung einer Zahl in ihre Bestandteile. Die Aufgabe des Kindes ist es, herauszufinden, zu welcher ganzen Zahl diese Summanden gehören. Zur Auswahl stehen mehrere Antwortmöglichkeiten, und nur eine davon ist korrekt.
Diese Art der Übung vermittelt Kindern spielerisch das Stellenwertsystem. Sie erkennen, dass jede Ziffer einer Zahl eine bestimmte Position und damit einen bestimmten Wert hat: Die „6“ in 673 steht für 600, die „7“ für 70 und die „3“ für 3. Das Addieren dieser Teile führt wieder zur ursprünglichen Zahl. So wird der abstrakte Zahlenaufbau sichtbar und greifbar gemacht.
Das regelmäßige Üben dieser Zerlegungen fördert das mathematische Denken und erleichtert später schwierigere Aufgaben wie das schriftliche Addieren oder Subtrahieren. Denn Kinder verstehen, dass Zahlen nicht isoliert stehen, sondern sich aus einzelnen Stellenwerten zusammensetzen.
Die Übung ist bewusst farbenfroh gestaltet: Jede Zahl erscheint in kräftigen Farben, und kleine Illustrationen wie Tiere oder Figuren sorgen für Abwechslung und Motivation. Auch bei Fehlern lernen Kinder dazu, da die richtige Lösung eingeblendet wird und sie sofort Rückmeldung erhalten.
So macht das Zerlegen von Zahlen nicht nur Spaß, sondern schafft auch ein stabiles Fundament für alle weiteren Rechenarten.
Zugehörige Standards
Addiere und subtrahiere bis 1000 mit konkreten Modellen, Zeichnungen und Strategien, die auf dem Stellenwert, den Rechengesetzen und/oder der Beziehung zwischen Addition und Subtraktion basieren, und übertrage die Strategie in schriftliche Verfahren. Verstehe, dass beim Addieren oder Subtrahieren dreistelliger Zahlen Hunderter mit Hunderten, Zehner mit Zehnern und Einer mit Einern verrechnet werden; manchmal müssen Zehner oder Hunderter zusammengesetzt oder zerlegt werden.
Die Schülerinnen und Schüler ...
- unterscheiden die Bedeutungen von Zahlen aus ihrer Umwelt (Zahlen als Mächtigkeiten von Mengen, als Zählzahlen, Platznummern, Maßzahlen und Kodierungen, z. B. Telefonnummern).
- orientieren sich im Zahlenraum bis Hundert durch flexibles Zählen (vorwärts, rückwärts, in Schritten); sie ordnen und vergleichen Zahlen und begründen Beziehungen zwischen Zahlen (z. B. gerade – ungerade, Nachbarzahlen) auch anhand des Zahlenstrahls und der Hundertertafel.
- erkennen und nutzen die 5er- und 10er-Struktur, um Mengen schnell zu erfassen (z. B. am Zwanzigerfeld und am Hunderterfeld).
- nutzen planvoll und systematisch die Struktur des Zehnersystems (Bündelung, Stellenwert) und führen Zahldarstellungen (z. B. Stellenwertschreibweise, Stufenschrift: 34 → 3Z 4E, Zahlwort, Einerwürfel/Zehnerstangen) ineinander über, um sicher über das dekadische Stellenwertsystem zu verfügen.
- schätzen und bestimmen Anzahlen und vergleichen Zahlen im Zahlenraum bis Hundert unter Verwendung der Begriffe ist größer als, ist kleiner als, ist gleich, mehr und weniger sowie der Rechenzeichen >, < und =, um eine Vorstellung von Größenordnungen zu bekommen.
- zerlegen Zahlen im Zahlenraum bis Hundert additiv (z. B. 10 = 1 + 9; 10 = 9 + 1; 32 = 30 + 2) und erläutern dabei Zusammenhänge mithilfe von strukturierten Darstellungen (z. B. Zwanzigerfeld, Hunderterfeld, Hundertertafel und Einerwürfel/Zehnerstangen).
- schreiben Ziffern und Zahlen deutlich und achten bei Rechnungen und anderen Notizen (z. B. in Skizzen, Tabellen) auf eine übersichtliche Schreibweise, um Rechenfehlern vorzubeugen.
Die Schülerinnen und Schüler ...
- ordnen den vier Grundrechenarten jeweils verschiedene Handlungen und Sachsituationen zu und umgekehrt (Addition als Vereinigen oder Hinzufügen; Subtraktion als Wegnehmen, Ergänzen oder Bestimmen des Unterschieds; Multiplikation als zeitlich-sukzessives Vervielfachen oder räumlich-simultane Gegebenheit; Division – auch mit Rest – als Aufteilen oder Verteilen); sie begründen damit Zusammenhänge zwischen den Grundrechenarten.
- wenden die Zahlensätze des Einspluseins bis Zwanzig sowie deren Umkehrungen (z. B. 9 – 7 = 2 als Umkehrung von 2 + 7 = 9) automatisiert und flexibel an, wobei sie ihre Kenntnisse auf analoge Plus- und Minusaufgaben übertragen.
- wenden Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze), deren Umkehrungen (z. B. 14 : 7 = 2 oder 14 : 2 = 7 als Umkehrungen von 2 ∙ 7 = 14) sowie Malaufgaben mit 0 automatisiert und flexibel an.
- nutzen die Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze) zur Lösung weiterer Aufgaben (z. B. 9 ∙ 8 → 9 ∙ 8 = 10 ∙ 8 – 1 ∙ 8 → 9 ∙ 8 = 80 - 8 = 72).
- nutzen Rechenstrategien (Rechnen in Schritten, Umkehr- und Tauschaufgaben, analoge Aufgaben, Nachbaraufgaben) sowohl im Zahlenraum bis 20 als auch im Zahlenraum bis 100, vergleichen sowie bewerten Rechenwege und begründen ihre Vorgehensweisen.
- überprüfen, ob Ergebnisse plausibel und richtig sind; sie finden, erklären und korrigieren Rechenfehler.
- erkennen, beschreiben und entwickeln arithmetische Muster (z. B. fortgesetzte Addition einer Zahl, gleich- und gegensinniges Verändern) und setzen diese folgerichtig fort.