Zahlen runden und ihre Summe berechnen
In dieser interaktiven Übung verbinden Kinder zwei wichtige mathematische Fähigkeiten: das Runden von Zahlen und das Addieren.
Im Alltag müssen Zahlen oft vereinfacht werden, um schneller rechnen oder Schätzungen durchführen zu können. Ob beim Einkaufen, beim Abmessen oder beim Planen – eine genaue Zahl ist nicht immer notwendig. Stattdessen reicht eine ungefähre Zahl, die durch Runden gewonnen wird.
So funktioniert die Übung:
-
Auf dem Bildschirm erscheinen zwei Zahlen, zum Beispiel 36 und 46.
-
Zunächst werden beide auf die nächstliegenden runden Zahlen gerundet. Dabei gilt die Rundungsregel:
-
Endziffer 0–4 → abrunden
-
Endziffer 5–9 → aufrunden
-
-
Danach werden die beiden gerundeten Zahlen in den vorgegebenen Ausdruck eingefügt und addiert.
Ein Beispiel:
36 wird zu 40 gerundet, 46 ebenfalls zu 50.
Die Aufgabe lautet dann: 40 + 50 = 90.
Ziele der Übung:
-
Kinder lernen, Rundungsregeln sicher anzuwenden.
-
Das Rechnen mit ungefähren Zahlen wird trainiert.
-
Das Kombinieren verschiedener Rechenarten (Runden und Addieren) stärkt das mathematische Denken.
-
Die Übung zeigt den praktischen Nutzen des Rundens in realen Situationen.
Die visuelle Gestaltung ist bunt und freundlich. Unter der Aufgabe erscheinen mehrere Antwortmöglichkeiten, aus denen die Kinder die richtigen gerundeten Zahlen auswählen müssen. So bleibt die Aufgabe abwechslungsreich und interaktiv. Selbst wenn ein Fehler passiert, wird die richtige Lösung eingeblendet und die nächste Aufgabe gestartet.
Diese Übung eignet sich für Kinder der 2. und 3. Klasse Grundschule, die bereits die Grundlagen der Addition beherrschen und jetzt lernen, wie man mit gerundeten Zahlen arbeitet. Spielerisch, motivierend und alltagsnah werden sie so Schritt für Schritt sicherer im Umgang mit Zahlen.
Zugehörige Standards
Verwende Addition und Subtraktion innerhalb von 100, um ein- und zweistufige Textaufgaben zu lösen. Die Aufgaben können Situationen beinhalten wie dazugeben, wegnehmen, zusammenfügen, zerlegen und vergleichen, mit unbekannten Zahlen in allen Positionen. Dabei können Zeichnungen und Gleichungen mit einem Symbol für die unbekannte Zahl verwendet werden, um das Problem darzustellen.
Verstehe, dass die drei Ziffern einer dreistelligen Zahl Hunderter, Zehner und Einer darstellen; z. B. 706 = 7 Hunderter, 0 Zehner, 6 Einer. Besondere Fälle: a) 100 = ein Bündel aus zehn Zehnern, ein „Hunderter“. b) Die Zahlen 100, 200, …, 900 stehen für ein bis neun Hunderter (0 Zehner und 0 Einer).
Lies und schreibe Zahlen bis 1000 in Stellenwertschreibweise, Zahlennamen und erweiterter Form.
Addiere bis zu vier zweistellige Zahlen mithilfe von Stellenwertstrategien und Rechengesetzen.
Die Schülerinnen und Schüler ...
- unterscheiden die Bedeutungen von Zahlen aus ihrer Umwelt (Zahlen als Mächtigkeiten von Mengen, als Zählzahlen, Platznummern, Maßzahlen und Kodierungen, z. B. Telefonnummern).
- orientieren sich im Zahlenraum bis Hundert durch flexibles Zählen (vorwärts, rückwärts, in Schritten); sie ordnen und vergleichen Zahlen und begründen Beziehungen zwischen Zahlen (z. B. gerade – ungerade, Nachbarzahlen) auch anhand des Zahlenstrahls und der Hundertertafel.
- erkennen und nutzen die 5er- und 10er-Struktur, um Mengen schnell zu erfassen (z. B. am Zwanzigerfeld und am Hunderterfeld).
- nutzen planvoll und systematisch die Struktur des Zehnersystems (Bündelung, Stellenwert) und führen Zahldarstellungen (z. B. Stellenwertschreibweise, Stufenschrift: 34 → 3Z 4E, Zahlwort, Einerwürfel/Zehnerstangen) ineinander über, um sicher über das dekadische Stellenwertsystem zu verfügen.
- schätzen und bestimmen Anzahlen und vergleichen Zahlen im Zahlenraum bis Hundert unter Verwendung der Begriffe ist größer als, ist kleiner als, ist gleich, mehr und weniger sowie der Rechenzeichen >, < und =, um eine Vorstellung von Größenordnungen zu bekommen.
- zerlegen Zahlen im Zahlenraum bis Hundert additiv (z. B. 10 = 1 + 9; 10 = 9 + 1; 32 = 30 + 2) und erläutern dabei Zusammenhänge mithilfe von strukturierten Darstellungen (z. B. Zwanzigerfeld, Hunderterfeld, Hundertertafel und Einerwürfel/Zehnerstangen).
- schreiben Ziffern und Zahlen deutlich und achten bei Rechnungen und anderen Notizen (z. B. in Skizzen, Tabellen) auf eine übersichtliche Schreibweise, um Rechenfehlern vorzubeugen.
Die Schülerinnen und Schüler ...
- ordnen den vier Grundrechenarten jeweils verschiedene Handlungen und Sachsituationen zu und umgekehrt (Addition als Vereinigen oder Hinzufügen; Subtraktion als Wegnehmen, Ergänzen oder Bestimmen des Unterschieds; Multiplikation als zeitlich-sukzessives Vervielfachen oder räumlich-simultane Gegebenheit; Division – auch mit Rest – als Aufteilen oder Verteilen); sie begründen damit Zusammenhänge zwischen den Grundrechenarten.
- wenden die Zahlensätze des Einspluseins bis Zwanzig sowie deren Umkehrungen (z. B. 9 – 7 = 2 als Umkehrung von 2 + 7 = 9) automatisiert und flexibel an, wobei sie ihre Kenntnisse auf analoge Plus- und Minusaufgaben übertragen.
- wenden Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze), deren Umkehrungen (z. B. 14 : 7 = 2 oder 14 : 2 = 7 als Umkehrungen von 2 ∙ 7 = 14) sowie Malaufgaben mit 0 automatisiert und flexibel an.
- nutzen die Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze) zur Lösung weiterer Aufgaben (z. B. 9 ∙ 8 → 9 ∙ 8 = 10 ∙ 8 – 1 ∙ 8 → 9 ∙ 8 = 80 - 8 = 72).
- nutzen Rechenstrategien (Rechnen in Schritten, Umkehr- und Tauschaufgaben, analoge Aufgaben, Nachbaraufgaben) sowohl im Zahlenraum bis 20 als auch im Zahlenraum bis 100, vergleichen sowie bewerten Rechenwege und begründen ihre Vorgehensweisen.
- überprüfen, ob Ergebnisse plausibel und richtig sind; sie finden, erklären und korrigieren Rechenfehler.
- erkennen, beschreiben und entwickeln arithmetische Muster (z. B. fortgesetzte Addition einer Zahl, gleich- und gegensinniges Verändern) und setzen diese folgerichtig fort.
Die Schülerinnen und Schüler ...
- schätzen Größen unter Verwendung von sicher abrufbaren Bezugsgrößen aus ihrer Erfahrungswelt und überprüfen – sofern möglich – ihre jeweilige Abschätzung durch Messen (z. B. Bezugsgröße Tafelhöhe: 1 m → Abschätzung Türhöhe: 2 m).
- vergleichen und ordnen Geldbeträge, Längen und Zeitspannen unter Verwendung der Begriffe weniger/mehr, kleiner/größer und kürzer/länger.
- ordnen Geldscheine und Münzen nach dem jeweiligen Wert, wechseln Geldbeträge und stellen sie auf unterschiedliche Weise dar (z. B. 10 € dargestellt als fünf 2 €-Münzen oder als ein 5 €-Schein, drei 1 €-Münzen und eine 2 €-Münze etc.).