Nachbarzahlen erkennen – Interaktive Mathe-Übung für die 2. Klas
Das Verständnis von Zahlenfolgen ist eine der wichtigsten Grundlagen in der Mathematik der Grundschule. In der 2. Klasse geht es nicht mehr nur darum, Zahlen zu erkennen oder zu zählen, sondern auch darum, ihre Reihenfolge sicher zu beherrschen. Ein zentrales Element dabei ist das Finden der Nachbarzahlen – also der Zahl, die direkt vor oder nach einer gegebenen Zahl steht.
Die Übung „Nachbarzahlen finden“ auf Schlaumik.de macht dieses Thema für Kinder besonders anschaulich und spielerisch. Auf dem Bildschirm erscheint eine Zahl, die mit einer freundlichen Tierfigur verbunden ist. Darunter werden mehrere andere Zahlen mit weiteren Tierchen angezeigt. Die Aufgabe der Kinder ist es, die beiden Nachbarzahlen der oben stehenden Zahl auszuwählen und richtig zu platzieren.
So lernen die Schülerinnen und Schüler Schritt für Schritt, wie sie sich in einer Zahlenreihe orientieren können: Welche Zahl kommt vor der 622? Welche folgt direkt danach? Indem sie dies regelmäßig üben, prägen sich die Kinder den Zahlenaufbau bis 1000 sicher ein.
Die Gestaltung ist bewusst kindgerecht gewählt. Fröhliche Tierfiguren wie Häschen, Bären oder Füchse begleiten die Zahlen und sorgen dafür, dass das Lernen wie ein kleines Spiel wirkt. Dadurch behalten die Kinder ihre Motivation und Neugier, während sie gleichzeitig ihre mathematischen Fähigkeiten trainieren.
Ein weiterer Vorteil: Selbst wenn ein Fehler passiert, geht es mit einer neuen Aufgabe weiter. Vorher wird aber die richtige Lösung angezeigt, sodass Kinder ihre Irrtümer sofort verstehen und daraus lernen können. So entsteht kein Frust, sondern ein Aha-Erlebnis, das den Lernerfolg unterstützt.
Die Übung passt perfekt zum Lehrplan der 2. Klasse. Sie fördert die Orientierung im Zahlenraum und stärkt das sichere Zählen vorwärts und rückwärts. Diese Kompetenz ist eine wichtige Grundlage für spätere Themen wie Addition, Subtraktion und Multiplikation.
Mit Schlaumik.de wird Mathe lebendig: kindgerecht, interaktiv und spannend. Die Übung „Nachbarzahlen finden“ ist ein spielerischer Weg, Zahlenfolgen besser zu verstehen und Sicherheit im Umgang mit großen Zahlen zu gewinnen.
Zugehörige Standards
Verwende Addition und Subtraktion innerhalb von 100, um ein- und zweistufige Textaufgaben zu lösen. Die Aufgaben können Situationen beinhalten wie dazugeben, wegnehmen, zusammenfügen, zerlegen und vergleichen, mit unbekannten Zahlen in allen Positionen. Dabei können Zeichnungen und Gleichungen mit einem Symbol für die unbekannte Zahl verwendet werden, um das Problem darzustellen.
Verstehe, dass die drei Ziffern einer dreistelligen Zahl Hunderter, Zehner und Einer darstellen; z. B. 706 = 7 Hunderter, 0 Zehner, 6 Einer. Besondere Fälle: a) 100 = ein Bündel aus zehn Zehnern, ein „Hunderter“. b) Die Zahlen 100, 200, …, 900 stehen für ein bis neun Hunderter (0 Zehner und 0 Einer).
Zähle bis 1000 und überspringe dabei in Schritten von 5, 10 und 100.
Lies und schreibe Zahlen bis 1000 in Stellenwertschreibweise, Zahlennamen und erweiterter Form.
Die Schülerinnen und Schüler ...
- unterscheiden die Bedeutungen von Zahlen aus ihrer Umwelt (Zahlen als Mächtigkeiten von Mengen, als Zählzahlen, Platznummern, Maßzahlen und Kodierungen, z. B. Telefonnummern).
- orientieren sich im Zahlenraum bis Hundert durch flexibles Zählen (vorwärts, rückwärts, in Schritten); sie ordnen und vergleichen Zahlen und begründen Beziehungen zwischen Zahlen (z. B. gerade – ungerade, Nachbarzahlen) auch anhand des Zahlenstrahls und der Hundertertafel.
- erkennen und nutzen die 5er- und 10er-Struktur, um Mengen schnell zu erfassen (z. B. am Zwanzigerfeld und am Hunderterfeld).
- nutzen planvoll und systematisch die Struktur des Zehnersystems (Bündelung, Stellenwert) und führen Zahldarstellungen (z. B. Stellenwertschreibweise, Stufenschrift: 34 → 3Z 4E, Zahlwort, Einerwürfel/Zehnerstangen) ineinander über, um sicher über das dekadische Stellenwertsystem zu verfügen.
- schätzen und bestimmen Anzahlen und vergleichen Zahlen im Zahlenraum bis Hundert unter Verwendung der Begriffe ist größer als, ist kleiner als, ist gleich, mehr und weniger sowie der Rechenzeichen >, < und =, um eine Vorstellung von Größenordnungen zu bekommen.
- zerlegen Zahlen im Zahlenraum bis Hundert additiv (z. B. 10 = 1 + 9; 10 = 9 + 1; 32 = 30 + 2) und erläutern dabei Zusammenhänge mithilfe von strukturierten Darstellungen (z. B. Zwanzigerfeld, Hunderterfeld, Hundertertafel und Einerwürfel/Zehnerstangen).
- schreiben Ziffern und Zahlen deutlich und achten bei Rechnungen und anderen Notizen (z. B. in Skizzen, Tabellen) auf eine übersichtliche Schreibweise, um Rechenfehlern vorzubeugen.
Die Schülerinnen und Schüler ...
- ordnen den vier Grundrechenarten jeweils verschiedene Handlungen und Sachsituationen zu und umgekehrt (Addition als Vereinigen oder Hinzufügen; Subtraktion als Wegnehmen, Ergänzen oder Bestimmen des Unterschieds; Multiplikation als zeitlich-sukzessives Vervielfachen oder räumlich-simultane Gegebenheit; Division – auch mit Rest – als Aufteilen oder Verteilen); sie begründen damit Zusammenhänge zwischen den Grundrechenarten.
- wenden die Zahlensätze des Einspluseins bis Zwanzig sowie deren Umkehrungen (z. B. 9 – 7 = 2 als Umkehrung von 2 + 7 = 9) automatisiert und flexibel an, wobei sie ihre Kenntnisse auf analoge Plus- und Minusaufgaben übertragen.
- wenden Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze), deren Umkehrungen (z. B. 14 : 7 = 2 oder 14 : 2 = 7 als Umkehrungen von 2 ∙ 7 = 14) sowie Malaufgaben mit 0 automatisiert und flexibel an.
- nutzen die Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze) zur Lösung weiterer Aufgaben (z. B. 9 ∙ 8 → 9 ∙ 8 = 10 ∙ 8 – 1 ∙ 8 → 9 ∙ 8 = 80 - 8 = 72).
- nutzen Rechenstrategien (Rechnen in Schritten, Umkehr- und Tauschaufgaben, analoge Aufgaben, Nachbaraufgaben) sowohl im Zahlenraum bis 20 als auch im Zahlenraum bis 100, vergleichen sowie bewerten Rechenwege und begründen ihre Vorgehensweisen.
- überprüfen, ob Ergebnisse plausibel und richtig sind; sie finden, erklären und korrigieren Rechenfehler.
- erkennen, beschreiben und entwickeln arithmetische Muster (z. B. fortgesetzte Addition einer Zahl, gleich- und gegensinniges Verändern) und setzen diese folgerichtig fort.
Die Schülerinnen und Schüler ...
- entnehmen relevante Informationen aus alltagsnahen Quellen (z. B. aus Bildern, Erzählungen, Handlungen, einfachen Texten) und formulieren dazu mathematische Fragestellungen.
- zeigen Zusammenhänge zwischen einfachen Sachsituationen und den entsprechenden Rechenoperationen auf und beschreiben diese auch im Austausch mit anderen.
- entwickeln, wählen und nutzen einfache Darstellungsformen (z. B. Skizzen, Tabellen, geeignetes Material zum Veranschaulichen und Handeln wie Plättchen oder Einerwürfel/Zehnerstangen) für das Bearbeiten mathematischer Probleme.
- entwickeln und nutzen einfache Strategien zur Problemlösung (z. B. systematisches Probieren).
- finden mathematische Lösungen zu Sachsituationen, vergleichen und begründen ihre Lösungswege auch im Austausch mit anderen (z. B. in Rechenkonferenzen) und wertschätzen deren Lösungswege.
- bestimmen die Anzahl der verschiedenen Möglichkeiten bei einfachen kombinatorischen Aufgabenstellungen durch Probieren (z. B. mögliche Kombinationen von 2 T-Shirts und 3 Hosen) und stellen Ergebnisse strukturiert dar (z. B. in Skizzen oder in Tabellen).