Subtraktion verstehen: Fehlende Zahlen im Ausdruck finden
Subtraktion ist die Umkehrung der Addition – doch im Gegensatz zu den gleichwertigen Summanden haben die einzelnen Teile beim Minusrechnen unterschiedliche Rollen. Genau das trainieren Kinder in dieser Online-Übung, indem sie fehlende Zahlen in Subtraktionsausdrücken richtig ergänzen.
Auf dem Bildschirm sehen die Schülerinnen und Schüler einen unvollständigen mathematischen Ausdruck. Mal fehlt das Minuend, also die größte Zahl der Aufgabe, mal der Subtrahend oder die Differenz. Die Kinder müssen herausfinden, welche Zahl gesucht ist, und sie in das freie Feld eintragen.
Dabei wenden sie grundlegende Rechenregeln an:
-
Um das Minuend zu bestimmen, addiert man Subtrahend und Differenz.
-
Um den Subtrahend zu finden, zieht man die Differenz vom Minuend ab.
-
Um die Differenz zu ermitteln, zieht man den Subtrahend vom Minuend ab.
So lernen die Kinder Schritt für Schritt die Beziehungen zwischen den Bestandteilen der Subtraktion und üben, flexibel mit verschiedenen Ausgangslagen umzugehen.
Die Zahlen in der Übung sind dreistellig und im Zahlenraum bis 1000 angesiedelt. Jede Aufgabe wird durch eine freundliche Illustration ergänzt und die Ziffern sind in bunten Farben und runden Formen gestaltet, sodass das Lernen nicht nur lehrreich, sondern auch optisch ansprechend ist.
Selbst wenn ein Fehler passiert, können die Kinder daraus lernen: Die richtige Lösung wird angezeigt, bevor es zur nächsten Aufgabe weitergeht. So wird die Subtraktion im Alltag verständlich, anschaulich und motivierend geübt.
Zugehörige Standards
Verwende Addition und Subtraktion innerhalb von 100, um ein- und zweistufige Textaufgaben zu lösen. Die Aufgaben können Situationen beinhalten wie dazugeben, wegnehmen, zusammenfügen, zerlegen und vergleichen, mit unbekannten Zahlen in allen Positionen. Dabei können Zeichnungen und Gleichungen mit einem Symbol für die unbekannte Zahl verwendet werden, um das Problem darzustellen.
Addiere und subtrahiere bis 1000 mit konkreten Modellen, Zeichnungen und Strategien, die auf dem Stellenwert, den Rechengesetzen und/oder der Beziehung zwischen Addition und Subtraktion basieren, und übertrage die Strategie in schriftliche Verfahren. Verstehe, dass beim Addieren oder Subtrahieren dreistelliger Zahlen Hunderter mit Hunderten, Zehner mit Zehnern und Einer mit Einern verrechnet werden; manchmal müssen Zehner oder Hunderter zusammengesetzt oder zerlegt werden.
Die Schülerinnen und Schüler ...
- unterscheiden die Bedeutungen von Zahlen aus ihrer Umwelt (Zahlen als Mächtigkeiten von Mengen, als Zählzahlen, Platznummern, Maßzahlen und Kodierungen, z. B. Telefonnummern).
- orientieren sich im Zahlenraum bis Hundert durch flexibles Zählen (vorwärts, rückwärts, in Schritten); sie ordnen und vergleichen Zahlen und begründen Beziehungen zwischen Zahlen (z. B. gerade – ungerade, Nachbarzahlen) auch anhand des Zahlenstrahls und der Hundertertafel.
- erkennen und nutzen die 5er- und 10er-Struktur, um Mengen schnell zu erfassen (z. B. am Zwanzigerfeld und am Hunderterfeld).
- nutzen planvoll und systematisch die Struktur des Zehnersystems (Bündelung, Stellenwert) und führen Zahldarstellungen (z. B. Stellenwertschreibweise, Stufenschrift: 34 → 3Z 4E, Zahlwort, Einerwürfel/Zehnerstangen) ineinander über, um sicher über das dekadische Stellenwertsystem zu verfügen.
- schätzen und bestimmen Anzahlen und vergleichen Zahlen im Zahlenraum bis Hundert unter Verwendung der Begriffe ist größer als, ist kleiner als, ist gleich, mehr und weniger sowie der Rechenzeichen >, < und =, um eine Vorstellung von Größenordnungen zu bekommen.
- zerlegen Zahlen im Zahlenraum bis Hundert additiv (z. B. 10 = 1 + 9; 10 = 9 + 1; 32 = 30 + 2) und erläutern dabei Zusammenhänge mithilfe von strukturierten Darstellungen (z. B. Zwanzigerfeld, Hunderterfeld, Hundertertafel und Einerwürfel/Zehnerstangen).
- schreiben Ziffern und Zahlen deutlich und achten bei Rechnungen und anderen Notizen (z. B. in Skizzen, Tabellen) auf eine übersichtliche Schreibweise, um Rechenfehlern vorzubeugen.
Die Schülerinnen und Schüler ...
- ordnen den vier Grundrechenarten jeweils verschiedene Handlungen und Sachsituationen zu und umgekehrt (Addition als Vereinigen oder Hinzufügen; Subtraktion als Wegnehmen, Ergänzen oder Bestimmen des Unterschieds; Multiplikation als zeitlich-sukzessives Vervielfachen oder räumlich-simultane Gegebenheit; Division – auch mit Rest – als Aufteilen oder Verteilen); sie begründen damit Zusammenhänge zwischen den Grundrechenarten.
- wenden die Zahlensätze des Einspluseins bis Zwanzig sowie deren Umkehrungen (z. B. 9 – 7 = 2 als Umkehrung von 2 + 7 = 9) automatisiert und flexibel an, wobei sie ihre Kenntnisse auf analoge Plus- und Minusaufgaben übertragen.
- wenden Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze), deren Umkehrungen (z. B. 14 : 7 = 2 oder 14 : 2 = 7 als Umkehrungen von 2 ∙ 7 = 14) sowie Malaufgaben mit 0 automatisiert und flexibel an.
- nutzen die Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze) zur Lösung weiterer Aufgaben (z. B. 9 ∙ 8 → 9 ∙ 8 = 10 ∙ 8 – 1 ∙ 8 → 9 ∙ 8 = 80 - 8 = 72).
- nutzen Rechenstrategien (Rechnen in Schritten, Umkehr- und Tauschaufgaben, analoge Aufgaben, Nachbaraufgaben) sowohl im Zahlenraum bis 20 als auch im Zahlenraum bis 100, vergleichen sowie bewerten Rechenwege und begründen ihre Vorgehensweisen.
- überprüfen, ob Ergebnisse plausibel und richtig sind; sie finden, erklären und korrigieren Rechenfehler.
- erkennen, beschreiben und entwickeln arithmetische Muster (z. B. fortgesetzte Addition einer Zahl, gleich- und gegensinniges Verändern) und setzen diese folgerichtig fort.