Einfaches Addieren mit der Zahl 1
Diese Übung führt Kinder der 1. Klasse behutsam an das Addieren heran – und zwar mit dem einfachsten Startpunkt: der Zahl 1. Auf dem Bildschirm erscheint ein klassischer Additionsausdruck mit zwei Summanden, verbunden durch das Pluszeichen und gefolgt vom Gleichheitszeichen – zum Beispiel „4 + 1 = ?“. Die Aufgabe des Kindes besteht darin, die richtige Summe zu finden und unter mehreren Antwortmöglichkeiten auszuwählen. Auch bei einem Fehler geht es weiter – vorher wird jedoch die richtige Lösung angezeigt, was einen sanften Lerneffekt ohne Frust garantiert. Jede neue Runde stellt eine neue Startzahl vor, zu der 1 addiert werden soll. Diese Übung ist besonders gut geeignet, um das Verständnis der Zahlenreihe zu festigen, da das Kind mit jeder Aufgabe übt, welche Zahl direkt auf eine andere folgt. Obwohl die mathematische Operation einfach ist, lernen die Kinder auf diese Weise wichtige Grundlagen: den Aufbau von Rechenaufgaben, die Bedeutung mathematischer Zeichen und die logische Abfolge von Zahlen. Perfekt für den Einstieg ins Rechnen – zu Hause oder im Unterricht.
Zugehörige Standards
Verwende Additionen und Subtraktionen im Zahlenraum bis 20, um Textaufgaben zu lösen, die das Hinzufügen, Wegnehmen, Zusammenfügen, Zerlegen und Vergleichen betreffen – mit unbekannten Zahlen an beliebiger Stelle.
Zum Beispiel durch den Einsatz von Gegenständen, Zeichnungen oder Gleichungen mit einem Symbol für die unbekannte Zahl zur Darstellung der Aufgabe.
Bestimme die unbekannte ganze Zahl in einer Additions- oder Subtraktionsgleichung mit drei ganzen Zahlen.
Zum Beispiel: Finde die Zahl, die jede der folgenden Gleichungen wahr macht:
8 + ? = 11, 5 = _ − 3, 6 + 6 = _.
Die Schülerinnen und Schüler:
- ordnen den vier Grundrechenarten jeweils verschiedene Handlungen und Sachsituationen zu und umgekehrt (Addition als Vereinigen oder Hinzufügen; Subtraktion als Wegnehmen, Ergänzen oder Bestimmen des Unterschieds; Multiplikation als zeitlich-sukzessives Vervielfachen oder räumlich-simultane Gegebenheit; Division – auch mit Rest – als Aufteilen oder Verteilen); sie begründen damit Zusammenhänge zwischen den Grundrechenarten.
- wenden die Zahlensätze des Einspluseins bis Zwanzig sowie deren Umkehrungen (z. B. 9 – 7 = 2 als Umkehrung von 2 + 7 = 9) automatisiert und flexibel an, wobei sie ihre Kenntnisse auf analoge Plus- und Minusaufgaben übertragen.
- wenden Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze), deren Umkehrungen (z. B. 14 : 7 = 2 oder 14 : 2 = 7 als Umkehrungen von 2 ∙ 7 = 14) sowie Malaufgaben mit 0 automatisiert und flexibel an.
- nutzen die Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze) zur Lösung weiterer Aufgaben (z. B. 9 ∙ 8 → 9 ∙ 8 = 10 ∙ 8 – 1 ∙ 8 → 9 ∙ 8 = 80 - 8 = 72).
- nutzen Rechenstrategien (Rechnen in Schritten, Umkehr- und Tauschaufgaben, analoge Aufgaben, Nachbaraufgaben) sowohl im Zahlenraum bis 20 als auch im Zahlenraum bis 100, vergleichen sowie bewerten Rechenwege und begründen ihre Vorgehensweisen.
- überprüfen, ob Ergebnisse plausibel und richtig sind; sie finden, erklären und korrigieren Rechenfehler.
- erkennen, beschreiben und entwickeln arithmetische Muster (z. B. fortgesetzte Addition einer Zahl, gleich- und gegensinniges Verändern) und setzen diese folgerichtig fort.