Übung „Nach Bild und Schema Gleichungen bilden“ – Erste Plusaufg
In dieser Übung lernen Kinder, eigene mathematische Ausdrücke zu bilden. Auf dem Bildschirm erscheint ein Bild – zum Beispiel ein Baum mit Früchten, die teilweise am Baum hängen und teilweise am Boden liegen. Unter dem Bild befindet sich ein einfaches Schema mit mathematischen Zeichen wie „+“ und „=“. Die Aufgabe der Kinder ist es, die richtigen Zahlen einzusetzen, sodass aus Bild und Schema eine passende Gleichung entsteht. Wenn etwa drei Früchte am Baum hängen und vier am Boden liegen, müssen die Kinder daraus die Aufgabe 3 + 4 = 7 bilden. Auf diese Weise erkennen sie, dass Addition nicht nur abstrakt, sondern auch im Alltag sichtbar ist. Jeder neue Level zeigt ein anderes Bild und eine neue Ausgangssituation – so bleibt die Übung spannend und abwechslungsreich. Durch das eigenständige Bilden von Gleichungen wird das Verständnis für Zahlenzerlegung, Addition und Mengen nachhaltig gestärkt. Farbige Illustrationen und kindgerechte Darstellungen motivieren zusätzlich und fördern den Spaß am Rechnen.
Zugehörige Standards
Verwende Additionen und Subtraktionen im Zahlenraum bis 20, um Textaufgaben zu lösen, die das Hinzufügen, Wegnehmen, Zusammenfügen, Zerlegen und Vergleichen betreffen – mit unbekannten Zahlen an beliebiger Stelle.
Zum Beispiel durch den Einsatz von Gegenständen, Zeichnungen oder Gleichungen mit einem Symbol für die unbekannte Zahl zur Darstellung der Aufgabe.
Addiere im Zahlenraum bis 100, einschließlich der Addition einer zweistelligen Zahl mit einer einstelligen Zahl sowie einer zweistelligen Zahl mit einem Vielfachen von 10. Verwende dazu konkrete Materialien oder Zeichnungen sowie Strategien auf der Grundlage des Stellenwertsystems, der Rechengesetze und/oder der Beziehung zwischen Addition und Subtraktion. Stelle den Bezug zur schriftlichen Methode her und erkläre das verwendete Vorgehen.
Verstehe dabei, dass beim Addieren zweistelliger Zahlen die Zehner mit den Zehnern und die Einer mit den Einern addiert werden – und dass dabei manchmal ein Zehner gebildet werden muss.
Die Schülerinnen und Schüler:
- ordnen den vier Grundrechenarten jeweils verschiedene Handlungen und Sachsituationen zu und umgekehrt (Addition als Vereinigen oder Hinzufügen; Subtraktion als Wegnehmen, Ergänzen oder Bestimmen des Unterschieds; Multiplikation als zeitlich-sukzessives Vervielfachen oder räumlich-simultane Gegebenheit; Division – auch mit Rest – als Aufteilen oder Verteilen); sie begründen damit Zusammenhänge zwischen den Grundrechenarten.
- wenden die Zahlensätze des Einspluseins bis Zwanzig sowie deren Umkehrungen (z. B. 9 – 7 = 2 als Umkehrung von 2 + 7 = 9) automatisiert und flexibel an, wobei sie ihre Kenntnisse auf analoge Plus- und Minusaufgaben übertragen.
- wenden Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze), deren Umkehrungen (z. B. 14 : 7 = 2 oder 14 : 2 = 7 als Umkehrungen von 2 ∙ 7 = 14) sowie Malaufgaben mit 0 automatisiert und flexibel an.
- nutzen die Kernaufgaben des kleinen Einmaleins (Einmaleinssätze mit 1, 2, 5, 10 und die Quadratsätze) zur Lösung weiterer Aufgaben (z. B. 9 ∙ 8 → 9 ∙ 8 = 10 ∙ 8 – 1 ∙ 8 → 9 ∙ 8 = 80 - 8 = 72).
- nutzen Rechenstrategien (Rechnen in Schritten, Umkehr- und Tauschaufgaben, analoge Aufgaben, Nachbaraufgaben) sowohl im Zahlenraum bis 20 als auch im Zahlenraum bis 100, vergleichen sowie bewerten Rechenwege und begründen ihre Vorgehensweisen.
- überprüfen, ob Ergebnisse plausibel und richtig sind; sie finden, erklären und korrigieren Rechenfehler.
- erkennen, beschreiben und entwickeln arithmetische Muster (z. B. fortgesetzte Addition einer Zahl, gleich- und gegensinniges Verändern) und setzen diese folgerichtig fort.